Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization
نویسندگان
چکیده
Extraction of compounds from microalgae requires cell disruption as a pretreatment to increase extraction yield. Botryococcus braunii is a microalga with a significant content of carotenoids and other antioxidant compounds, such as chlorophylls. Cell disruption of B. braunii using CO2 rapid depressurization was studied as a pretreatment for the extraction of carotenoid and chlorophyll pigments. We studied the effect of temperature (21-49°C) and pressure (6-13MPa) during static compression on pigment recovery with supercritical CO2 at 40°C, 30MPa and solvent flow of 4.7LNPT/min. Within the experimental region, the extraction yield of carotenoids and chlorophylls increased by 2.4- and 2.2-fold respectively. Static compression conditions of high pressure and low temperature increased the extraction of carotenoids and especially chlorophylls. We selected 21°C and 13MPa as the cell disruption condition, which produced 1.91g/kg d.s. of carotenoids and 14.03mg/kg d.s. of chlorophylls. Pretreated microalga gave a 10-fold higher chlorophyll extraction yield compared to the untreated sample. While for carotenoids and tocopherols were 1.25 and 1.14-fold higher, respectively. Additionally, antioxidant activity of pretreated microalga (33.22mmol TE/kg oil) was significantly higher than the value for the untreated samples (29.11mmol TE/kg oil) (p≤0.05). Confocal microscopy images showed morphological differences between micro-colonies with and without disruption treatment, suggesting that partial cell disruption by rapid depressurization improved the extraction of microalga compounds.
منابع مشابه
Simple, Rapid and Cost-Effective Method for High Quality Nucleic Acids Extraction from Different Strains of Botryococcus braunii
This study deals with an effective nucleic acids extraction method from various strains of Botryococcus braunii which possesses an extensive extracellular matrix. A method combining freeze/thaw and bead-beating with heterogeneous diameter of silica/zirconia beads was optimized to isolate DNA and RNA from microalgae, especially from B. braunii. Eukaryotic Microalgal Nucleic Acids Extraction (EMN...
متن کاملSeawater-Cultured Botryococcus braunii for Efficient Hydrocarbon Extraction
UNLABELLED As a potential source of biofuel, the green colonial microalga Botryococcus braunii produces large amounts of hydrocarbons that are accumulated in the extracellular matrix. Generally, pretreatment such as drying or heating of wet algae is needed for sufficient recoveries of hydrocarbons from B. braunii using organic solvents. In this study, the Showa strain of B. braunii was cultured...
متن کاملUtilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load
Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...
متن کاملUtilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load
Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than B...
متن کاملPreparation and Characterization of Liposomal Nanovesicles Using Supercritical Carbon Dioxide Expansion-Depressurization of Phospholipid Suspension (SEDPS)
Liposomal nanovesicles (LN) were produced utilizing the supercritical carbon dioxide expansion-depressurization of phospholipid suspension (SEDPS) process via two depressurization protocols. The effects of pressure (60–300 bar), depressurization rate (10– 120 bar/min) and depressurization protocol on the vesicle size, polydispersity index (PdI), morphology and storage stability of LN were inves...
متن کامل